metabelian, supersoluble, monomial
Aliases: C62.81D6, C33⋊13(C4⋊C4), C33⋊5C4⋊4C4, (C32×C6).7Q8, (C6×Dic3).6S3, (C3×C6).21Dic6, (C32×C6).45D4, C6.6(C32⋊2Q8), C2.3(C33⋊6D4), C6.26(D6⋊S3), C6.2(C32⋊4Q8), C2.2(C33⋊4Q8), C32⋊8(Dic3⋊C4), C3⋊1(C62.C22), C3⋊1(C6.Dic6), C6.11(C6.D6), C6.13(C32⋊7D4), (C3×C62).11C22, (C2×C6).35S32, C6.5(C4×C3⋊S3), (C3×C6).51(C4×S3), C22.9(S3×C3⋊S3), (Dic3×C3×C6).3C2, (C6×C3⋊Dic3).4C2, (C2×C3⋊Dic3).6S3, C2.5(C33⋊8(C2×C4)), (C3×C6).63(C3⋊D4), (C32×C6).42(C2×C4), (C2×C33⋊5C4).3C2, (C2×Dic3).2(C3⋊S3), (C2×C6).17(C2×C3⋊S3), SmallGroup(432,453)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C62.81D6
G = < a,b,c,d | a6=b6=1, c6=a3, d2=b3, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=b3c5 >
Subgroups: 984 in 220 conjugacy classes, 72 normal (26 characteristic)
C1, C2, C3, C3, C3, C4, C22, C6, C6, C6, C2×C4, C32, C32, C32, Dic3, C12, C2×C6, C2×C6, C2×C6, C4⋊C4, C3×C6, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C33, C3×Dic3, C3⋊Dic3, C3×C12, C62, C62, C62, Dic3⋊C4, C32×C6, C6×Dic3, C6×Dic3, C2×C3⋊Dic3, C2×C3⋊Dic3, C6×C12, C32×Dic3, C3×C3⋊Dic3, C33⋊5C4, C3×C62, C62.C22, C6.Dic6, Dic3×C3×C6, C6×C3⋊Dic3, C2×C33⋊5C4, C62.81D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, D6, C4⋊C4, C3⋊S3, Dic6, C4×S3, C3⋊D4, S32, C2×C3⋊S3, Dic3⋊C4, C6.D6, D6⋊S3, C32⋊2Q8, C32⋊4Q8, C4×C3⋊S3, C32⋊7D4, S3×C3⋊S3, C62.C22, C6.Dic6, C33⋊8(C2×C4), C33⋊6D4, C33⋊4Q8, C62.81D6
(1 123 48 7 129 42)(2 124 37 8 130 43)(3 125 38 9 131 44)(4 126 39 10 132 45)(5 127 40 11 121 46)(6 128 41 12 122 47)(13 70 35 19 64 29)(14 71 36 20 65 30)(15 72 25 21 66 31)(16 61 26 22 67 32)(17 62 27 23 68 33)(18 63 28 24 69 34)(49 108 142 55 102 136)(50 97 143 56 103 137)(51 98 144 57 104 138)(52 99 133 58 105 139)(53 100 134 59 106 140)(54 101 135 60 107 141)(73 95 115 79 89 109)(74 96 116 80 90 110)(75 85 117 81 91 111)(76 86 118 82 92 112)(77 87 119 83 93 113)(78 88 120 84 94 114)
(1 81 40 115 125 93)(2 94 126 116 41 82)(3 83 42 117 127 95)(4 96 128 118 43 84)(5 73 44 119 129 85)(6 86 130 120 45 74)(7 75 46 109 131 87)(8 88 132 110 47 76)(9 77 48 111 121 89)(10 90 122 112 37 78)(11 79 38 113 123 91)(12 92 124 114 39 80)(13 58 72 107 27 143)(14 144 28 108 61 59)(15 60 62 97 29 133)(16 134 30 98 63 49)(17 50 64 99 31 135)(18 136 32 100 65 51)(19 52 66 101 33 137)(20 138 34 102 67 53)(21 54 68 103 35 139)(22 140 36 104 69 55)(23 56 70 105 25 141)(24 142 26 106 71 57)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 28 115 59)(2 52 116 33)(3 26 117 57)(4 50 118 31)(5 36 119 55)(6 60 120 29)(7 34 109 53)(8 58 110 27)(9 32 111 51)(10 56 112 25)(11 30 113 49)(12 54 114 35)(13 47 107 88)(14 93 108 40)(15 45 97 86)(16 91 98 38)(17 43 99 96)(18 89 100 48)(19 41 101 94)(20 87 102 46)(21 39 103 92)(22 85 104 44)(23 37 105 90)(24 95 106 42)(61 81 144 125)(62 130 133 74)(63 79 134 123)(64 128 135 84)(65 77 136 121)(66 126 137 82)(67 75 138 131)(68 124 139 80)(69 73 140 129)(70 122 141 78)(71 83 142 127)(72 132 143 76)
G:=sub<Sym(144)| (1,123,48,7,129,42)(2,124,37,8,130,43)(3,125,38,9,131,44)(4,126,39,10,132,45)(5,127,40,11,121,46)(6,128,41,12,122,47)(13,70,35,19,64,29)(14,71,36,20,65,30)(15,72,25,21,66,31)(16,61,26,22,67,32)(17,62,27,23,68,33)(18,63,28,24,69,34)(49,108,142,55,102,136)(50,97,143,56,103,137)(51,98,144,57,104,138)(52,99,133,58,105,139)(53,100,134,59,106,140)(54,101,135,60,107,141)(73,95,115,79,89,109)(74,96,116,80,90,110)(75,85,117,81,91,111)(76,86,118,82,92,112)(77,87,119,83,93,113)(78,88,120,84,94,114), (1,81,40,115,125,93)(2,94,126,116,41,82)(3,83,42,117,127,95)(4,96,128,118,43,84)(5,73,44,119,129,85)(6,86,130,120,45,74)(7,75,46,109,131,87)(8,88,132,110,47,76)(9,77,48,111,121,89)(10,90,122,112,37,78)(11,79,38,113,123,91)(12,92,124,114,39,80)(13,58,72,107,27,143)(14,144,28,108,61,59)(15,60,62,97,29,133)(16,134,30,98,63,49)(17,50,64,99,31,135)(18,136,32,100,65,51)(19,52,66,101,33,137)(20,138,34,102,67,53)(21,54,68,103,35,139)(22,140,36,104,69,55)(23,56,70,105,25,141)(24,142,26,106,71,57), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,28,115,59)(2,52,116,33)(3,26,117,57)(4,50,118,31)(5,36,119,55)(6,60,120,29)(7,34,109,53)(8,58,110,27)(9,32,111,51)(10,56,112,25)(11,30,113,49)(12,54,114,35)(13,47,107,88)(14,93,108,40)(15,45,97,86)(16,91,98,38)(17,43,99,96)(18,89,100,48)(19,41,101,94)(20,87,102,46)(21,39,103,92)(22,85,104,44)(23,37,105,90)(24,95,106,42)(61,81,144,125)(62,130,133,74)(63,79,134,123)(64,128,135,84)(65,77,136,121)(66,126,137,82)(67,75,138,131)(68,124,139,80)(69,73,140,129)(70,122,141,78)(71,83,142,127)(72,132,143,76)>;
G:=Group( (1,123,48,7,129,42)(2,124,37,8,130,43)(3,125,38,9,131,44)(4,126,39,10,132,45)(5,127,40,11,121,46)(6,128,41,12,122,47)(13,70,35,19,64,29)(14,71,36,20,65,30)(15,72,25,21,66,31)(16,61,26,22,67,32)(17,62,27,23,68,33)(18,63,28,24,69,34)(49,108,142,55,102,136)(50,97,143,56,103,137)(51,98,144,57,104,138)(52,99,133,58,105,139)(53,100,134,59,106,140)(54,101,135,60,107,141)(73,95,115,79,89,109)(74,96,116,80,90,110)(75,85,117,81,91,111)(76,86,118,82,92,112)(77,87,119,83,93,113)(78,88,120,84,94,114), (1,81,40,115,125,93)(2,94,126,116,41,82)(3,83,42,117,127,95)(4,96,128,118,43,84)(5,73,44,119,129,85)(6,86,130,120,45,74)(7,75,46,109,131,87)(8,88,132,110,47,76)(9,77,48,111,121,89)(10,90,122,112,37,78)(11,79,38,113,123,91)(12,92,124,114,39,80)(13,58,72,107,27,143)(14,144,28,108,61,59)(15,60,62,97,29,133)(16,134,30,98,63,49)(17,50,64,99,31,135)(18,136,32,100,65,51)(19,52,66,101,33,137)(20,138,34,102,67,53)(21,54,68,103,35,139)(22,140,36,104,69,55)(23,56,70,105,25,141)(24,142,26,106,71,57), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,28,115,59)(2,52,116,33)(3,26,117,57)(4,50,118,31)(5,36,119,55)(6,60,120,29)(7,34,109,53)(8,58,110,27)(9,32,111,51)(10,56,112,25)(11,30,113,49)(12,54,114,35)(13,47,107,88)(14,93,108,40)(15,45,97,86)(16,91,98,38)(17,43,99,96)(18,89,100,48)(19,41,101,94)(20,87,102,46)(21,39,103,92)(22,85,104,44)(23,37,105,90)(24,95,106,42)(61,81,144,125)(62,130,133,74)(63,79,134,123)(64,128,135,84)(65,77,136,121)(66,126,137,82)(67,75,138,131)(68,124,139,80)(69,73,140,129)(70,122,141,78)(71,83,142,127)(72,132,143,76) );
G=PermutationGroup([[(1,123,48,7,129,42),(2,124,37,8,130,43),(3,125,38,9,131,44),(4,126,39,10,132,45),(5,127,40,11,121,46),(6,128,41,12,122,47),(13,70,35,19,64,29),(14,71,36,20,65,30),(15,72,25,21,66,31),(16,61,26,22,67,32),(17,62,27,23,68,33),(18,63,28,24,69,34),(49,108,142,55,102,136),(50,97,143,56,103,137),(51,98,144,57,104,138),(52,99,133,58,105,139),(53,100,134,59,106,140),(54,101,135,60,107,141),(73,95,115,79,89,109),(74,96,116,80,90,110),(75,85,117,81,91,111),(76,86,118,82,92,112),(77,87,119,83,93,113),(78,88,120,84,94,114)], [(1,81,40,115,125,93),(2,94,126,116,41,82),(3,83,42,117,127,95),(4,96,128,118,43,84),(5,73,44,119,129,85),(6,86,130,120,45,74),(7,75,46,109,131,87),(8,88,132,110,47,76),(9,77,48,111,121,89),(10,90,122,112,37,78),(11,79,38,113,123,91),(12,92,124,114,39,80),(13,58,72,107,27,143),(14,144,28,108,61,59),(15,60,62,97,29,133),(16,134,30,98,63,49),(17,50,64,99,31,135),(18,136,32,100,65,51),(19,52,66,101,33,137),(20,138,34,102,67,53),(21,54,68,103,35,139),(22,140,36,104,69,55),(23,56,70,105,25,141),(24,142,26,106,71,57)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,28,115,59),(2,52,116,33),(3,26,117,57),(4,50,118,31),(5,36,119,55),(6,60,120,29),(7,34,109,53),(8,58,110,27),(9,32,111,51),(10,56,112,25),(11,30,113,49),(12,54,114,35),(13,47,107,88),(14,93,108,40),(15,45,97,86),(16,91,98,38),(17,43,99,96),(18,89,100,48),(19,41,101,94),(20,87,102,46),(21,39,103,92),(22,85,104,44),(23,37,105,90),(24,95,106,42),(61,81,144,125),(62,130,133,74),(63,79,134,123),(64,128,135,84),(65,77,136,121),(66,126,137,82),(67,75,138,131),(68,124,139,80),(69,73,140,129),(70,122,141,78),(71,83,142,127),(72,132,143,76)]])
66 conjugacy classes
| class | 1 | 2A | 2B | 2C | 3A | ··· | 3E | 3F | 3G | 3H | 3I | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6O | 6P | ··· | 6AA | 12A | ··· | 12P | 12Q | 12R | 12S | 12T |
| order | 1 | 2 | 2 | 2 | 3 | ··· | 3 | 3 | 3 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 | 12 | 12 | 12 | 12 |
| size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 6 | 6 | 18 | 18 | 54 | 54 | 2 | ··· | 2 | 4 | ··· | 4 | 6 | ··· | 6 | 18 | 18 | 18 | 18 |
66 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
| type | + | + | + | + | + | + | + | - | + | - | + | + | - | - | |||
| image | C1 | C2 | C2 | C2 | C4 | S3 | S3 | D4 | Q8 | D6 | Dic6 | C4×S3 | C3⋊D4 | S32 | C6.D6 | D6⋊S3 | C32⋊2Q8 |
| kernel | C62.81D6 | Dic3×C3×C6 | C6×C3⋊Dic3 | C2×C33⋊5C4 | C33⋊5C4 | C6×Dic3 | C2×C3⋊Dic3 | C32×C6 | C32×C6 | C62 | C3×C6 | C3×C6 | C3×C6 | C2×C6 | C6 | C6 | C6 |
| # reps | 1 | 1 | 1 | 1 | 4 | 4 | 1 | 1 | 1 | 5 | 10 | 10 | 10 | 4 | 4 | 4 | 4 |
Matrix representation of C62.81D6 ►in GL8(𝔽13)
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 12 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
| 5 | 3 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 8 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 8 | 5 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 12 | 12 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 12 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 12 | 12 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12],[5,0,0,0,0,0,0,0,3,8,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12],[8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,12] >;
C62.81D6 in GAP, Magma, Sage, TeX
C_6^2._{81}D_6 % in TeX
G:=Group("C6^2.81D6"); // GroupNames label
G:=SmallGroup(432,453);
// by ID
G=gap.SmallGroup(432,453);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,28,141,36,571,2028,14118]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^6=1,c^6=a^3,d^2=b^3,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=b^3*c^5>;
// generators/relations